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A B S T R A C T

Challenges of contemporary molecular biology include predicting how genes are
regulated in a network, which proteins participate in metabolic pathways and how
they interact. The high-throughput biotechnologies like microarrays provide us with
gigabytes of data describing the expression profiles of genes. There is a need of
bioinformatics tools enabling the analysis of these data. In this paper we describe an
automatic method of predicting gene regulation functions. In our approach we apply
the procedure from (Shamir et al., 2004), appropriately modified to handle real-life
examples of genetic control in Arabidopsis thaliana.
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INTRODUCTION

The great challenge of postgenomic biology is to understand how cellular
phenomena arise from the connectivity of genes and proteins. This
connectivity generates molecular network diagrams. A systematic approach to
analyze them requires the development of mathematical models. Ideally, to
benefit from the increasing amount of data, this kind of model should be
inferred automatically using computational methods.

During the last ten years, a lot of research has been done on mathematical
models of gene regulation (De Jong, 2002). There are several approaches; one
of them is to describe the behavior of the system using differential equations.
Unfortunately, this approach is often impossible to implement. Another
approach, that allows to express some level of non-determinism in a real cell,
are stochastic differential equations (Chen et al., 2005). A stochastic framework
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is also applied in Bayesian networks, which turn out to be a very effective tool
for inferring gene interactions from microarray data (Dojer et al., 2005).

In this paper, we describe gene interactions as a dynamic system in which
the regulation of a gene is modeled using a logical function associated with it.
This function yields the state of a given gene in a following time step,
depending on the states of its regulators in the preceding step. The most
important feature of the model is its ability to make the predictions about the
behavior of the system. The process of inferring the model has several stages.
We focus here on the problem of modeling the dynamics of the gene network.
Throughout the paper, we assume that the topology of interactions is known
from previous experiments. The behavior of the dynamical system we deal
with can be characterized by the set of steady states, attractors. These are the
endpoints of possible trajectories of the system’s dynamical behavior. It is
assumed that the outcomes of the microarray experiments correspond exactly
to the steady states of the observed system. Hence, we will consider the given
set of interactions and the given set of stationary states and we will find an
appropriate set of regulation functions.

The same problem was considered by (Mendoza and Alvarez-Buylla,
2000; Mendoza et al., 1999). However, their approach is restricted to
a concrete regulation system and cannot be easily generalized. In contrast to
this kind of manual approach, we propose a fully automatic procedure for
inferring the dynamical behavior of the system with a given set of attractors.
To this aim, we adopt the algorithm proposed recently by Shamir et al. (2004).
Since this method fails when applied to some more complex networks, we
proposed necessary modifications yielding a significant improvement with
respect to the original version.

Following (Mendoza et al., 1999), we will consider the model plant
Arabidopsis thaliana. There is a large body of published data that support the
existence of complex regulatory networks of two molecular processes in
A. thaliana: flower morphogenesis and root hair development.

In the last ten years, A. thaliana has become universally recognized as
a model plant for molecular studies. It is a small flowering plant that belongs
to the Brassica family, which includes species such as broccoli, cauliflower,
cabbage, and radishes. Although it has no commercial uses, it is favored
among scientists because it develops, reproduces, and responds to stress and
disease in much the same way as many crop plants.

In this paper two examples of gene networks corresponding to different
developmental processes are considered. The first network includes genes
involved in flower morphogenesis that has been intensively studied and forms
the basis of the ‘ABC’ combinatorial model (Coen and Meyerowitz, 1991).
Roughly speaking, there are three different genetic activities, each of them
present in two adjacent whorls and each whorl requires a specific combination
of genetic activities. For example, activities A and B combined in the second
whorl determine petal identity, A alone determines sepal identity, B and C
determine stamen identity, and finally C determines carpel identity. The



Automated modeling of genetic control in Arabidopsis thaliana

J. Fruit Ornam. Plant Res. vol. 14 (Suppl. 1), 2006: 163-171 165

second example consists of modeling the root hair development process. We
consider the network of interacting genes which control root epidermal
differentiation.

MATERIAL AND METHODS

The model that we analyze has been proposed by Irit Gat-Viks, Amos
Tanay and Ron Shamir (2004). The approach consists of building an initial
model based on biological knowledge and refining it in order to increase the
adequacy between model predictions and biological data. The model
encompasses heterogeneous biological entities (mRNAs, proteins, meta-
bolites) and a wide variety of regulation mechanisms.

The regulatory network is represented by a directed graph (Fig. 1). Graph
vertices correspond to model variables, and edges to direct variable
dependencies, which means that the edge u expresses the fact that u is
a regulator of . Additionally, each variable with non-zero in-degree has its
regulation function that determines the state of the variable depending on its
regulators. A model state is an assignment of states to all model variables. We
say that a variable state agrees with the model when its value is induced by
the corresponding regulation function applied to the regulators. A model state
that agrees with each variable is called a mode.

Figure 1. Example of a regulation graph

Figure 1 illustrates the above notions. The model includes three variables
with binary state space (dark – off, light – on). The regulation functions are:
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We call the vertex having in-degree zero the source of the graph. In our
example the only source is vertex X. We are interesting in the modes of our
model – clearly they depend on the state of the source X. For example, if the
vertex X is “on” the model has two modes: [X,Y,Z]=[1,0,1] and [X,Y,Z]=[1,0,0].

The algorithm from (Shamir et al., 2004) consists of two main phases:
computing the modes and learning regulation functions. Computing modes
plays a role of regulation simulation: given an experimental starting condition,
it predicts the final mode at which the system eventually arrives. Learning
regulation functions aims at improving consistency of the model with the
experimental data.
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In order to measure the ability of the model to correctly predict the
outcome of biological experiments the authors of (Shamir et al., 2004)
introduced a discrepancy score. This score measures the discrepancy between
experimental measurements e and the mode s resulting from the algorithm for
the same experimental conditions. The discrepancy function is defined as
follows: where we sum over all vertices in the graph model M. )(s denotes
the state of vertex v in the mode s and e() denotes the state assigned to
by the experimental measurements.
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The problem of learning regulation functions reduces therefore to
optimizing one particular function in the model. This way, it is possible to
derive an improved model with a lower discrepancy. The function
optimization problem is computationally hard. The solution proposed in
(Shamir et al., 2004) is an approximation obtained by translating the problem
to a combinatorial problem on matrices. The outline of the algorithm of
(Shamir et al., 2004) is as follows.

The first modification we introduced in the algorithm consisted of several
different strategies of choosing the regulation function to be optimized in Step
5. This aspect of the algorithm is not described in (Shamir et al., 2004). Since
the learning algorithm stops in a local minimum, we suppose that the order of
optimization might have an impact upon the result. We have developed
strategies that are slightly more efficient than the naive strategy of learning all
functions in a random order. From the outcomes of several experiments for
various strategies, we concluded that the overall improvement obtained in this
way was not significant.
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The second modification was to manipulate on the topology of the graph.
We have explored the observation that the graph topology is assumed to be
known at the start and remains unchanged throughout the algorithm. We have
intensively tested the algorithm on different graphs. It turned out that the
algorithm is much more efficient on small graphs. This means that the
learning procedure proposes the regulation functions yielding smaller
discrepancy.

Therefore, we have decided to introduce a modification according to the
divide and conquer principle. Our idea was to divide the graph, perform the
basic algorithm on its subparts, and then merge the results in the best way.
In our implementation, after the construction phase the algorithm performs
user-predefined cuts on the graph and applies Algorithm 1 to the resulting
subgraphs. Regulation functions obtained for the subgraphs are merged to
form functions in the original graph. This is done by extending each function
to the function with a greater number of arguments (corresponding to the
edges removed by the cut). Algorithm 1 is then iterated several times on the
merged graph.

RESULTS AND DISCUSSION

The regulation systems we analyzed are flower morphogenesis and root
epidermis cells hair development of A. thaliana. Our modification has
significantly improved the algorithm performance for these two regulation
networks.

Figure 2. Regulation network of A. thaliana flower morphogenesis from (De la
Fuente et al., 2002)
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The first regulation network (Fig. 2) is composed of ten variables.
Following (De la Fuente et al., 2002) we were using ten experimental data
measurements for this model.

Algorithm 1 has been run ten times on the entire graph yielding an
average discrepancy score of 17.2. This is a rather poor result because it
means that on average in each simulation there is at least one incorrect
regulation function.

Regarding the graph topology we proposed 3 cuts (see Fig. 2):

Cut 1 is the most intuitive for the graph topology – it divides the graph by
removing a minimal number of edges of the same direction.

Cut 2 was induced from the results obtained for Cut 1 – the only
discrepancies that appeared after Cut 1 came from the subgraph A.
The idea therefore was to divide the graph into two equal parts.

Cut 3 is an improvement of the first cut – since dividing the graph into two
equal parts did not give satisfying results we decided to keep Cut 1
and additionally divide the subgraph A.

T a b l e 1 . Results of cutting algorithm on the flower morphogenesis regulation
network

Cut 1 Cut 2 Cut 3
Subgraph A 3.5 0.0 2.1
Subgraph B 0.1 0.9 0.1
Subgraph C - - 0.0
Merged graph 6.9 19.1 5.1
Min. 1 4 1
Max. 14 31 9
Graph without cuts 17.2 17.2 17.2

Table 1 shows the results of each cut.

Already the first cut resulted in an over 50% improvement. Subgraph B is
sufficiently small for the algorithm to find the correct regulation functions.
Nevertheless, the bigger subgraph with the average discrepancy of 3.5
contributes to the final discrepancy in the merged graph.

The second cut divides graph into two parts of roughly equal size. Even
though the correct regulation functions in each part are found, the results after
merging are not satisfactory. This observation suggests that the optimal cuts
should be minimal. If we remove many edges the partial results are not
relevant for merged graph.

Taking into consideration the results of Cut 2 and the graph topology, we
concluded that the only way to obtain even better results is to keep Cut 1 and
divide the bigger subgraph. This resulted in the most accurate model with an
average discrepancy of 5.1. Each of the created subgraphs had small
discrepancy and the graph merge did not generate additional discrepancies.
The second model we used was the regulation system of root epidermis hair
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development in A. thaliana (Mendoza and Alvarez-Buylla, 2000,). This is
a graph of eight vertices with a small number of edges. There are two
regulation pathways ending in genes which are crucial for the hair
development.

Figure 3. Regulation network of root epidermis hair development of A. thaliana
(Mendoza and Alvarez-Buylla, 2000)

The size and density of the graph (Fig. 3) does not present many cutting
possibilities. We proposed four cuts:

Cut 1 seams to be reasonable since it divides the graph into two roughly
equal parts and the removed edges have the same direction.

Cut 2 removes edges of the same direction but doesn’t divide the graph
equally.

Cuts 3 and 4 are symmetrical and remove edges of opposite directions.

Table 2 shows the discrepancy scores of the described cuts.

T a b l e 2 . Results of the cutting algorithm on the root epidermis of Arabidopsis
thaliana regulation network

Cut 1 Cut 2 Cut 3 Cut 4
Subgraph A 0.0 5.0 2.2 3.4
Subgraph B 6.0 0.0 2.0 4.0
Merged graph 6.0 7.0 5.4 8.6
Min. 6 7 5 8
Max. 6 7 8 11
Graph without cuts 10.3 10.3 10.3 10.3

In the case of Cut 3, our modification resulted in a nearly 50% (in the case
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of Cut 3) improvement in the algorithm performance. What is specific about
cuts on such a network is that, due to a small search space, the results
obtained for the subgraphs are highly repetitive. In most cases, the algorithm
gives the same result and the learning procedure fails to improve it further.

CONCLUSION

In this paper we have presented a method for automatically inferring gene
regulation functions modeled as logical functions. The method is mainly
based on the algorithm proposed in (Shamir et al., 2004) in which our
contribution includes the decomposition strategy for the network. This
modification substantially improves the applicability of the original method
which was proved by the tests on two real-life examples of genetic control in
developmental processes of Arabidopsis thaliana.
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AUTOMATYCZNE MODELOWANIE GENETYCZNEJ
KONTROLI U RZODKIEWNIKA (Arabidopsis thaliana)

K a t a r z y n a B o że k , A n n a G a m b i n ,
B a r t e k W i l c z yńs k i i J e r z y T i u r y n

S T R E S Z C Z E N I E

Praca prezentuje algorytm modelowania regulacji biologicznej. Jest to
automatyczna metoda konstrukcji i optymalizacji modelu heterogenicznej sieci
regulacji na postawie danych z eksperymentów biologicznych. Eksperymenty
wykonywane sąnajczęściej z użyciem technologii mikromacierzy i badany jest
w nich poziom ekspresji genów. Przedstawiony przez nas algorytm jest modyfikacją
metody Shamira. W zaproponowanym podejściu graf obrazujący zależności
pomiędzy genami jest dekomponowany na mniejsze podsieci, których optymalizacja
przebiega niezależnie. W końcowej fazie wyniki dla części składowych sąscalane,
aby uzyskaćkompletny model.

Wprowadzone ulepszenie znacznie poprawiło efektywnośćmetody i umożliwiło
przetestowanie algorytmu na danych dotyczących regulacji genów w rzodkiewniku
(Arabidopsis thaliana). Udało sięzbudowaćmodel dla dwóch procesów różnicowania
siękomórek – morfogenezy kwiatu oraz rozwoju włosków komórek korzenia.

Słowa kluczowe: siećregulacji genów, model grafowy, funkcje logiczne, mikromacierze


