IMPROVEMENT OF CAULIFLOWER MALE STERILE LINES WITH **BRASSICA NIGRA CYTOPLASM**

Piotr Kamiński

Department of Genetics, Breeding and Biotechnology, Research Institute of Vegetable Crops, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland e-mail: pkaminsk@iwarz.pl

INTRODUCTION

In the Research Institute of Vegetable Crops, Skierniewice, Poland, cytoplasmic male sterile lines of broccoli and broccolicauliflower have been maintained, selected and investigated since 1976. In these cms plants stamens are transformed into petals. Therefore genotypes with B. nigra cytoplasm usually have lower ability to sexual propagation by the seeds at a large scale in comparison to fertile cauliflower lines. Cauliflower and broccoli cms genotypes with Brassica nigra cytoplasm are commonly described as unsuitable for the breeding due to the abnormalities in flower morphology, and lack of nectarines that makes cms plants not attractive for the pollinators.

The aim of work was the improvement of the seed effectiveness and curd quality of cauliflower genotypes with *B. nigra* cytoplasm. In 1999 four selected cauliflower genotypes with B. nigra cytoplasm as well as their maintainers were crossed with three good quality fertile cauliflower lines. In the consecutive generations back-crosses maintainance of sterility in cms lines and identification of homozygous, recessive ms,ms genes in the maintainer lines followed by the selection of the good quality traits. Simultaneously improvement of B. nigra cauliflower lines for flower structure, larger nectarines and screening for effective seed formation through selection process was performed.

REFERENCES

DICKSONMH, KYLE M. 1987. Seed production on cytosterile *B. oleracea plants with B. nigra cytoplasm.* Cruciferae Newsletter. 12: 45 DICKSONMH. 1975. G 1117A, 1102A and G 1106A cytosterile broccoli inbredes. Hort. Sci. Vol.10: 535 Hoster-Knuzzk. 1982. The influence of different self-incompatible and cytoplasmic male-sterile lines of cauliflower (Brasska oleracea var. *barytis* L.) on heterosis effect of some traits in F₁ hybrids. Genetica Polonica, 33 (4): 273-278 KAMINSKI P. 2005. Progress in the breeding of cytoplasimcally male-sterile (CMS) cauliflower lines. In:: Zmienność genetyczna i jej wykorzystanie w hodowli roślin ogrodniczych. Monografia. Praca zbiorowa pod redakcją Barbary Michalik i Edwarda Żurawicza: 43-47 KAMINSKI, P., DYKI B. 2007. Seed productivity and seed stalk morphology of male-sterile icauliflower lines with *Brasska nigra* cytoplasm. "Spontaneous and induced variation for the genetic improvement of horticultural crops." Pawet Nowaczyk. ed. University of Technology and Life Seinces Press. 27-81

PERSON, O.H. 1972. Cytoplasmically inherited male sterility characters and Flavor components from the species cross *Brassica nigra* (L) Koch x *B. oleracea* L. J. Amer. Soc. Hort. Sci. 97 (3): 397-402 PEARSON, O.H. 1971. Cytoplasmically inherited flavor and male sterility factors in *Brassica*. Vegetable Improvement Newsletter No.13 SZYLARCZYK M, KAMINSKI P, SURQWKA M, WOLCIK M, DOMINICZ B. 2008. Genetic and molecular analysis of cauliflower plants carrying *Brassica nigra* cytoplasm. Modern Variety Breeding fo 972 September 2005 (2007). nts carrying Brassica nigra cytoplasm. Modern Variety Breeding for Present and Future Needs, Proceedings of the 18th EUCARPIA General Congress

				Seed effectiveness of male sterile plants in comparison
No	Lino	Elowers morphology	Mass of soods/plant (a)	to their fertile component
1	AD2V6	male sterile B. pigra	0.81	(78)
<u> </u>	RD2V6	fortile maintainer	17 10	4,74
2	AD417	molo storilo P. nigro	0.70	25.50
2	AF417	fortile maintainer	9,70	33,30
2	AD26		£ 20	12.47
3	AF30	fortile maintainer	39,20	13,47
6	AD204	molo storilo P. nigro	30,00	0.19
0	AD294	fatile stelle D. fligid	4,04	9,10
7	BD 294	rentie maintainer	44,00	4.40
<u> </u>	ADZ74	male steme B. nigra	2,22	4,40
	AD2/4	rentie maintainer	50,40	0.70
°	ADZYZ	male steme B. nigra	1,70	3,72
	BD2Y2	tertile maintainer	45,60	1.00
9	ADZY7	male sterile B. nigra	1,54	4,83
10	BD2Y7	fertile maintainer	31,86	
10	AP119	male sterile B. nigra	2,49	11,81
-	BP119	fertilemaintainer	21,10	
11	AP601	male sterile B. nigra	1,99	4,39
_	BP610	fertilemaintainer	45,28	
12	AP640	male sterile B. nigra	2,44	5,73
	BP640	fertilemaintainer	42,66	
_	APLA368	male sterile	10,59	27,44
13	BPLA36	fertilemaintainer	38,60	
	APLA51113	male sterile	20,30	78,68
14	BPLA511	fertile maintainer	25,80	
	APLA5412	male sterile	5,20	17,45
15	BPLA54	fertile maintainer	29,80	

Seed effectivens of cauliflower male sterile lines with B.nigra cytoplasm in comparison to their fertile maintainer

RESULTS

In 2009 most of cauliflowers with B. nigra cytoplasm were vigorous with good commercial value. Generally, lines that possessed cytoplasm from B. nigra had lower seed productivity than the fertile lines. Most of the cms lines were characterized by smaller or more significant abnormalities in flower and seed stalk morphological structures that probably influenced their lower ability to set seed. However, male sterile lines with relatively higher seed setting effectiveness may be used in the future as parental components for breeding F_1 hybrids. According to obtained results, cms system with B. nigra cytoplasm is reliable and feasible to maintain, however, cms lines with higher ability for generative propagation should be checked for their stability in consecutive generations.