Zadanie 99. Badanie molekularnego mechanizmu odporności na kilę kapusty (*Plasmodiophora brassicae*) u roślin z rodzaju *Brassica*.

Celem badań prowadzonych w roku 2019 w ramach dwóch tematów badawczych były:

- ustalenie tożsamości transkryptów podlegających zróżnicowanej ekspresji u badanych genotypów poprzez analizę BLAST oraz ich mapowanie na genom kapusty;
- wytypowanie do analiz genów kandydackich biorących udział w reakcjach odpornościowych roślin kapustowatych podczas infekcji *P.brassicae;*
- walidacja genów kandydackich poprzez ilościową analizę ich ekspresji u wybranych genotypów roślin kapustowatych podczas infekcji *P.brassicae*.

Temat badawczy 1. Analiza sekwencjonowanych fragmentów cDNA-AFLP pod kątem ich homologii i funkcji.

Celem tematu badawczego 1. było ustalenie tożsamości transkryptów podlegających zróżnicowanej ekspresji u badanych genotypów poprzez analizę BLAST oraz ich mapowanie na genom kapusty oraz wytypowanie do analiz genów kandydackich biorących udział w reakcjach odpornościowych roślin kapustowatych podczas infekcji *P.brassicae*. Temat został zrealizowany w 100%.

Przeprowadzono analizę homologii BLAST wyizolowanych w latach 2016-2018 150 fragmentów cDNA-AFLP ulegających zróżnicowanej ekspresji podczas infekcji roślin z rodzaju *Brassica* patogenem *P.brassicae*. Podczas ponownej analizy homologii dla 12% fragmentów cDNA-AFLP ulegających nadekspresji podczas infekcji *P. brassicae* u roślin z rodzaju *Brassica* ustalono homologię do sekwencji kodujących zgromadzonych w bazie GenBank. Dla większości z tych fragmentów, w poprzednich latach badań nie udało się ustalić homologii do znanych sekwencji. Ustalono, że fragmenty te wykazują podobieństwo do sekwencji kodujących m.in. białko odpornościowe PDR2, proteazę SBT3.3., metylotransferazę PMT24, oksygenazę inozytolu 4, dehydrogenazę NADH oraz białka o niezidentyfikowanej do tej pory funkcji.

W przypadku fragmentów cDNA-AFLP, które były wyciszone w zainfekowanych komórkach, to dla 13,8% z nich ustalono homologie do znanych sekwencji. Ustalono, że fragmenty te wykazują podobieństwo do sekwencji kodujących, m.in.: białka transportujące siarczany w komórkach, białka wiążące DNA oraz białka o niezidentyfikowanej do tej pory funkcji. Zidentyfikowane fragmenty AFLP podzielono na grupy na podstawie funkcji jaką pełnią podczas patogenezy. Zidentyfikowano 8 grup genów kodujących białka biorące udział w reakcjach odpornościowych, transdukcji sygnału, regulacji cyklu komórkowego, transporcie komórkowym, potranslacyjnej modyfikacji białek, regulacji ekspresji genów, budowie cytoszkieletu oraz innych funkcjach komórkowych. Podsumowując, po przeprowadzeniu ponownej analizy homologii zidentyfikowanych fragmentów cDNA-AFLP, wśród fragmentów ulegających nadekspresji w komórkach zainfekowanych 10,9% fragmentów w dalszym ciągu nie wykazywało homologii do znanych sekwencji zgromadzonych w bazie danych, 6,5% z nich prawdopodobnie pochodziło od patogena, natomiast zdecydowana większość - 82,6% wykazywała podobieństwo do sekwencji kodujących białka zgromadzonych w bazie danych GenBank. Wśród fragmentów ulegających wyciszeniu w komórkach zainfekowanych, 31% fragmentów nie wykazywało homologii do znanych sekwencji zgromadzonych w bazie danych, natomiast pozostałe 69% wykazywało podobieństwo do sekwencji kodujących białka zgromadzonych w bazie danych.

W roku 2019 wykonano wstępną analizę dotyczącą mapowania zidentyfikowanych 150 sekwencji genów ulegających nadekspresji się pod wpływem infekcji *P.brassicae* (differentially expressed sequence tags, dESTs) na genomy roślin kapustowatych. Do analiz jako genom referencyjny wykorzystano genomy: 1) *B. napus* (genom AACC); 2) *B. oleracea* (genom CC) oraz 3)

B. rapa (genom AA). Spośród wszystkich analizowanych 150 fragmentów cDNA-AFLP średnio 79,6% wykazywało wysokie podobieństwo do referencyjnych sekwencji genomowych z rodzaju *Brassica* wykorzystanych do analiz. Największa ilość sekwencji – 84% mapowała się na genomie *B. napus*, a najmniejsza – 76% na genomie *B. oleracea*. Na podstawie analiz homologii wytypowano 45 genów kandydujących, najprawdopodobniej uczestniczących w reakcjach odpornościowych (Tabela 1). Zidentyfikowane sekwencje genów uaktywniających się pod wpływem infekcji *P.brassicae* zostały zbadane pod kątem poziomu ich ekspresji w poszczególnych genomach roślin kapustowatych. 15 wytypowanych genów analizowano w roku 2019, natomiast 30 zaplanowano do analizy w roku 2020. Dla każdego z wytypowanych fragmentów zaprojektowano pary specyficznych starterów, a poziom ekspresji poszczególnych genów normalizowano w stosunku do genu referencyjnego kodującego aktynę.

Temat badawczy 2. Walidacja wybranych markerów odporności metodą real-time PCR.

Celem tematu badawczego 2. była optymalizacja warunków PCR dla ilościowych analiz ekspresji oraz walidacja genów kandydackich poprzez ilościową analizę ich ekspresji u wybranych genotypów roślin kapustowatych podczas infekcji *P.brassicae*. Temat został zrealizowany w 100%.

Przeprowadzono analizy ekspresji dla 15 genów kodujących: białka odpornościowe TIR-NBS-LRR; kinazy serynowo-treoninowe; hydrolazy i dehydrogenazy; białka związane z syntezą metabolitów wtórnych oraz białka receptorów błonowych. Materiał roślinny do badań stanowiło 7 genotypów roślin z rodzaju *Brassica* o różnym poziomie odporności na kiłę kapusty oraz genotyp wrażliwy, infekowane *P. brassicae* patotyp 2.

Analizie poddano geny kodujące białko N, białko Pid3, białko PDCD1, białko MA3 oraz proteazę SBT3.3. Profile ekspresyjne dla genów kodujących białka N oraz PDCD1 były podobne u genotypów wykazujących niski stopień porażenia w ocenie makroskopowej: kapusty głowiastej 'Kilaton F₁', kapusty pekińskiej 'Bilko F₁', rzepaku 'Mendel F₁', brukwi 'Wilhelmsburger' oraz rzepy ECD03. Zarówno białko N, jak i PDCD1 określane są jako białka związane z HR oraz PCD, które ograniczają rozprzestrzenianie się patogena (McHale i wsp. 2006). Względny poziom ekspresji genów kodujących białka Pid3 oraz MA3 wzrastał w czasie infekcji u kapusty głowiastej 'Kilaton F₁'. Obronną funkcję białka Pid3 potwierdzono u ryżu (Lv i wsp. 2013), natomiast białka z domeną MA3 zaangażowane są w procesy indukowania PCD. Inaczej wyglądał profil ekspresyjny genu kodującego proteazę SBT3.3, którego najwyższy poziom ekspresji obserwowano u kapusty głowiastej 'Kilaton F₁' oraz, w mniejszym stopniu u rzepaku 'Mendel F₁', brukwi 'Wilhelmsburger', rzepy ECD03 i kapusty pekińskiej 'Bilko F₁'. Meyer i wsp. (2016) potwierdzili nadekspresję proteazy SBT3 w roślinach pomidora podczas mechanicznego zranienia i żerowania fitofagów (*Manduca sexta*). Natomiast prezentowane wyniki sugerują, że nadekspresja tego genu może zachodzić także w tkankach nie uszkodzonych mechaniczne.

Analizie poddano geny kodujące kinazy ATM, TMK1, cdc7 oraz At5g24010. Kinazy jako jedne z największych i najbardziej znaczących białek, mają wpływ na regulację niemal wszystkich procesów biochemicznych zachodzących w komórce, a ich aktywność może być regulowana przez uszkodzenia DNA oraz sygnały chemiczne docierające do komórki. Grupa kinaz serynowo-treoninowych odgrywa znaczącą rolę w regulacji odpowiedzi na sygnały, często wywołujące stres oksydacyjny (Stone i Walker 1995; Chevalier i Walker 2005). U badanych genotypów obserwowano stosunkowo niski względny poziom ekspresji genu kodującego kinazę ATM. Prawdopodobnie nie jest ona bezpośrednio zaangażowana w procesy odpornościowe komórki podczas infekcji. Względna ekspresja pozostałych kinaz była najwyższa u genotypów z najmniejszym stopniem porażenia przez kiłę. Najwyższy poziom ekspresji genów kodujących kinazy TMK1 oraz cdc7 obserwowano u rzepy ECD03, kapusty

głowiastej 'Kilaton F_1 ', kapusty pekińskiej 'Bilko F_1 ' oraz rzepaku 'Mendel F_1 ', a kinazy At5g24010 – u kapusty głowiastej 'Kilaton F1' oraz rzepy ECD03.

Analizie poddano geny kodujące hydrolazy Sgpp oraz ABH, a także dehydrogenazę B7. Ich ekspresja w roślinach infekowanych *P. brassicae* zależna była od genotypu. Największy poziom względnej ekspresji genu kodującego hydrolazę Sgpp obserwowano u kapusty głowiastej 'Kilaton F₁' oraz rzepaku 'Mendel F₁', a hydrolazę ABH – jedynie u rzepaku 'Mendel F₁'. Nadekspresję genu kodującego hydrolazę Sgpp mogą wywoływać stresy abiotyczne oraz biotyczne – u *A. thaliana* nadekspresję tego genu obserwowano w komórkach korzeni podczas ekspozycji na zasolenie oraz stres oksydacyjny (Caparrós-Martin i wsp. 2013). Najwyższy poziom względnej ekspresji genu kodującego dehydrogenazę B7 obserwowano u genotypów wykazujących najniższy poziom porażenia – kapusty głowiastej 'Kilaton F₁', rzepaku 'Mendel F₁', rzepy ECD03 oraz kapusty pekińskiej 'Bilko F₁'. Wykazano, że u wielu roślin geny kodujące dehydrogenazy ALDH, do których należy dehydrogenaza B7, ulegają nadekspresji podczas ekspozycji na wiele czynników stresogennych (brak wody, obecność metali ciężkich, wysokie zasolenie, ciepło, zimno, promieniowanie UV itp.) (Brocker i wsp. 2013).

Analizie poddano także geny kodujące białka uczestniczące w syntezie metabolitów wtórnych: dioksygenazy flawanonu oraz syntazy germakrenowej. W przypadku genu kodującego dioksygenazę flawanonu biorącego udział w syntezie flawonoidów chroniących komórki przed ROS (Czaplińska i wsp. 2012) najwyższy poziom ekspresji obserwowano u genotypów najsilniej porażonych przez patogena: kapusty głowiastej 'Bindsachsener' oraz jarmużu 'Verheul', ale również w przypadku rzepaku 'Mendel F₁', który wykazywał niski stopień porażenia. Liczne doniesienia naukowe wskazują, że flawonoidy zapewniają obronę przed owadami, roślinożercami oraz patogenami (Ortuno i wsp. 2006; Steinkellner i wsp. 2007) oraz odgrywają rolę cząsteczek sygnałowych (Tu i wsp. 2016). W przypadku genu kodującego syntazę germakrenową – enzymu biorącego udział w syntezie germakrenów – związków o charakterze przeciwdrobnoustrojowym i owadobójczym, zdecydowanie wyższą względną ekspresję obserwowano u kapusty głowiastej 'Kilaton F₁', która w ocenie makroskopowej nie wykazywała symptomów choroby oraz u rzepy ECD03 i kapusty pekińskiej 'Bilko F₁'. Wyniki te mogą potwierdzać fakt, że gen kodujący ten enzym ulega nadekspresji podczas ataku owadów czy patogenów (Li i wsp. 2016; Røstelien i wsp. 2000).

Względna ekspresja genu kodującego białko z domeną SNARE była największa u kapusty głowiastej 'Kilaton F₁', kapusty pekińskiej 'Bilko F₁', rzepaku 'Mendel F₁' oraz u brukwi 'Wilhelmsburger' i rzepy ECD03. Wysoki poziom ekspresji tego genu może świadczyć o występowaniu infekcji wtórnej i wysokim poziomie obrony przed patogenem. Białka z domeną SNARE to receptory rozpuszczalnych białek transbłonowych biorące udział w rozpoznawaniu cząsteczek sygnałowych oraz ich fuzji z błoną komórkową. Wykazano, że u jęczmienia prawidłowość w budowie i składzie receptorów SNARE warunkuje odporność na *Blumeria graminis* (Collins i wsp. 2003). Również wysoki poziom ekspresji genu kodującego to białko w przypadku infekcji roślin z rodzaju *Brassica* przez *P. brassicae* może potwierdzać udział tego białka w czynnej odporności roślin na patogeny.

Podsumowując, względny poziom ekspresji wytypowanych do badań genów był zróżnicowany i zależał od genotypu. Względne poziomy ekspresji genów kodujących białka opornościowe z domeną TIR-NBS-LRR były najwyższe u genotypów, u których nie obserwowano objawów choroby. Względne poziomy ekspresji genów kodujących kinazy serynowo-treoninowe były najwyższe u jednego genotypu: rzepy ECD03, która w badaniach prowadzonych w latach 2016-2018 wykazywała najwyższą odporność na badane patotypy patogena oraz u kapusty głowiastej 'Kilaton F₁', która w ocenie makroskopowej nie wykazywała symptomów choroby.

Lp.	fragment cDNA- AFLP	Homologia BLAST	Lp.	fragment cDNA- AFLP	Homologia BLAST
1	81-1	resistance protein N-like	24	56-4	cyclin-B2-2-like
2	29-21	resistance protein Pid3	25	71-171	cyclin-Y-like protein 1
3	29-17	subtilisin-like protease SBT3.3	26	47-1	unc-119 lipid binding chaperone (Unc119)
4	85-3	MA3 domain-containing protein	27	11-8	ABC transporter G family member
5	62-105	programmed cell death 1 (PDCD1)	28	47-87	glycerol-3-phosphate transporter 4
6	66-108	ATM serine/threonine kinase	29	106-189	protein NRT1/PTR FAMILY
7	14-201	protein kinase At5g24010	30	22-3	probable methyltransferase PMT24
8	122-247	protein kinase TMK1	31	35.1-183	histone-lysine N-methyltransferase ATX5 isoform X3
9	127-247	serine/threonine-protein kinase cdc7	32	80-171	pentatricopeptide repeat-containing protein
10	26.2-140	hydrolase Sgpp	33	23-135	zinc finger protein ZAT5
11	72-171	alpha/beta fold hydrolase	34	46-87	transcription factor bHLH118-like
12	26.1-140	aldehyde dehydrogenase B7	35	48-87	ethylene-responsive transcription factor ERF109-like
13	77-110	snare-domain-containing protein	36	6-111	DNA-directed RNA polymerase I subunit rpa1
14	70-108	flavanone 3-dioxygenase	37	103-189	ransposase-associated domain-containing protein
15	1-201	Germacrene D synthase-like	38	35.2-183	wybutosine-synthesizing protein 2/3/4
16	56-92	drug resistance protein 2-like (PDR2)	39	125-247	eukaryotic translation initiation factor 3 subunit C- like
17	29-14	surface glycoprotein CD1a	40	22-6	COBRA-like protein6
18	77-171	ribosome-binding protein 1	41	37-183	formin-like protein 5
19	70-207	mediator od RNA polymerase II transcripton subunit 25	42	54-92	formin-like protein 3 isoform X1
20	55-2	IQ motif and SEC7 domain-containing protein 1	43	58-92	xyloglucan endotransglucosylase/hydrolase
21	29-15	potassium channel tetramerization domain containing 8 (KCTD8)	44	114-189	galacturonosyltransferase 13
22	67-207	kinase non-catalytic C-lobe domain-containing protein 1 isoform X2	45	43-183	microtubule-associated protein futsch-like
23	11-3	protein phosphatase 1 regulatory subunit 26 (PP1R26)			

Tabela 1. Geny kandydujące zaangażowane w reakcje odpornościowe wytypowane do walidacji metodą real-time PCR.

Literatura:

- Brocker C., Vasiliou M., Carpenter S., Carpenter C., Zhang Y., Wang X., Kotchoni S.O., Wood A.J., Kirch H-H., Kopečný D., Nebert D.W., Vasiliou V. 2013. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237 (1): 189-210
- Caparrós-Martín J.A., McCarthy-Suárez I., Culiáñez-Macià F.A. 2013. HAD hydrolase function unveiled by substrate screening: enzymatic characterization of *Arabidopsis thaliana* subclass I phosphosugar phosphatase AtSgpp. Planta 237 (4): 943-954
- Chevalier D., Walker J.C. 2005. Functional genomics of protein kinases in plants. Briefings in functional genomics and proteomics 3 (4): 362-371
- Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J-L., Hückelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P. 2003. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973–977
- Czaplińska M., Czepas J., Gwoździński K. 2012. Budowa, właściwości przeciwutleniające i przeciwnowotworowe flawonoidów. Postępy Biochemii 58 (3) 2012

- Li Y., Chen F., Li Z., Li C., Zhang Y. 2016. Identification and Functional Characterization of Sesquiterpene Synthases from *Xanthium strumarium*. Plant and Cell Physiology 57(3) 630–641
- Lv Q., Xu X., Shang J., Jiang G., Pang Z., Zhou Z., Wang J., Liu Y., Li T., Li X., Xu J., Cheng Z., Zhao X., Li S., Zhu L. 2013. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103(6):594-9
- McHale L., Tan X., Koehl P., Michelmore R.W. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biol7(4): 212
- Meyer M., Huttenlocher F., Cedzich A., Procopio S., Stroeder J., Pau-Roblot C., Lequart-Pillon M., Pelloux J., Stintzi A., Schaller A. 2016. The subtilisin-like protease SBT3 contributes to insect resistance in tomato. J. Exp. Bot.67 (14): 4325-4338
- Ortuño A., Báidez A., Gómez P., Arcas M.C., Porras I., García-Lidón A., DelRío J.A. 2006. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chemistry 98 (2): 351-358
- Røstelien T., Borg-Karlson A.-K., Fäldt J., Jacobsson U., Mustaparta H. 2000. The Plant SesquiterpeneGermacrene D Specifically Activates a Major Type of Antennal Receptor Neuron of the Tobacco Budworm Moth *Heliothis virescens*. Chemical Senses 25(2) 141–148
- Steinkellner S., Lendzemo V., Langer I., Schweiger P., Khaosaad T., Toussaint J-P., Vierheilig H. 2007. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 12(7): 1290-1306
- Stone J.M., Walker J.C. 1995. Plant Protein Kinase Families and Signal Transduction. Plant Physiol. (1995) 108: 451-457